
PHY 420 Report: Attenuation of Solar Energy Through a
Tree

Aysha Rahman

May 9, 2018

Abstract

Solar panels in urban areas or in home and business settings are often surrounded by trees so that
sunlight is blocked at certain angles during the day. This greatly reduces the output energy of the
solar panels. To assess the attenuation of light through a dormant tree, Monte Carlo simulations of a
randomly branching tree are designed. Tree branching is simulated under the following assumptions:
that the tree branches in ten iterations, that it branches into two each time, that each new branch is
a fraction of the length of the previous one, that the total thickness or volume of all branches in an
iteration is equal to the thickness of the trunk, and that the angle of branching is no more than 90
degrees. After simulating the structure of the tree, a path of sunlight is integrated through the tree’s
branches to determine the fraction of light blocked for a given range of angles.

1 Introduction

The Bradley Observatory at Agnes Scott College has solar panels on its roof. However, as it is located in
an area with many trees, one of the panels is blocked by a tree. This greatly reduces the energy output of
the solar panels, even in the winter when the tree is dormant. To investigate how much this tree affects
energy output, a Monte Carlo simulation of light passing through a randomly generated dormant tree is
designed to measure the amount of light attenuated by the branches. The program is not yet finished; this
report documents progress thus far.

2 Assumptions

Some initial assumptions and observations are as follows: Every branch diverges into two each time the
tree splits. When the split occurs, the two new branches are no more than 90 degrees apart from one
another. The tree branches 10 times; by observation, the trees nearby the area generally split between 7
and 14 times, and therefore 10 is a good assumption to set in the code. The overall thickness of the tree
does not change; if the entire tree were to be collimated, the thickness would remain constant. The length
of each of the new branches is shorter than the length of the previous one.

3 Creating the Tree

To create the tree, we consider four variables: the length of each branch, its thickness, its horizontal or
azimuthal angle ϕ, and its vertical angle θ.

We consider r to be a random number between 0 and 1, L to be the length of a branch, t to be the
thickness, ϕ to be the horizontal or azimuthal angle, and θ to be the vertical angle. Then we generate each
property by these rules:

1

1. For each new branch Ln, its length is equal to the length of the previous branch Ln−1 times the
random number rL between zero and one, given by the equation

Ln = Ln−1 ∗ rL. (1)

2. For the thickness, we consider the thickness of a left branch Tn,left vs the thickness of a right branch
Tn,right and multiply by a new random number rT to get the first branch thickness. The remaining
branch thickness is calculated from the first thickness. This is described by the following equations:

Tn,left = Tn−1 ∗ rT (2)

Tn,right = Tn−1(1− rT). (3)

3. For the vertical angle θ, which comes down from the z axis onto the x-y plane, we assume that the
branch splits symmetrically along its own axis and say that the θ for the left and the right are the
same

θleft = θright. (4)

4. For the azimuthal angle ϕ, which rotates the new branches along the x-y plane, we assume that the
branches split along this angle exactly opposite each other, so we say

ϕleft = ϕright − π. (5)

As mentioned previously, the tree is a collection of points inside a 3-dimensional grid. These points
are stored in the code as arrays, with one each for the x, y, and z coordinates, as well as one for length
and one for thickness. Each array has 2047 points, where we store the beginning and endpoints of each
branch. This number comes from the number of tree branches. From our assumptions, we say there are
10 iterations and 2 new branches at every split, so the total number of branches is

10∑
n=0

2n = 2047. (6)

4 Coordinate Systems

We use two different kinds of coordinate systems here: a global one and a local one. We think of our global
coordinate system being a cube, a 3-dimensional grid with the points where the tree exists filled in. We
can say the “lines” of the grid use a step size that we’ll define in the code, which we choose to be as small
as the computer can handle. The global coordinate system has its origin at the base of the tree. The point
where the trunk splits is 0, 0, L0, with L0 being the length of the trunk.

Each branch has its own local coordinate system. This is used to generate the new branches, and the
origin is located at wherever the parent branch splits into two, with the z axis being along the parent
branch. In order for the new branches to be useful, they must be converted back into the global coordinate
system. We use the following rotation matrix to do this,xy

z

 =

cosϕ −sinϕ 0
sinϕ cosϕ 0

0 0 1

 cosθ 0 sinθ
0 1 0

−sinθ 0 cosθ

x′y′
z′

 =

cosϕcosθ −sinϕ cosϕsinθ
sinϕcosθ cosϕ sinϕsinθ
−sinθ 0 cosθ

 (7)

where θ is the azimuthal angle that goes from 0 to 2π and ϕ is the vertical angle that goes from 0 to π.

2

5 Code

The following is the code created to generate a random tree.

#include <s t d i o . h>
#include <s t d l i b . h>
#include <math . h>
#include <s t r i n g . h>
#include <time . h>

/∗ ∗∗
∗ Program to c a l c u l a t e the branches o f a t r e e .
∗
∗ Units :
∗ Length = m
∗ Time = sec
∗
∗∗ ∗/

int main (int argc , char ∗argv [])
{

double t p i = 6 .283185308 ;
double pi = 3 .141592654 ;
int i , j , k=0,m, n , p , q , t =0,s , l =0, Nlocal , Lsteps , r s t e p s ;
int MAXPTS=64000 ,MAXLOCAL=1000;
FILE ∗ out f ;
double s t e p s i z e =0.1 , L0=10.0 , r1 , r2 , r3 , r4 , t0 =1;
double A00 , A01 , A02 , A10 , A11 , A12 , A20 , A21 , A22 ;
double x0 [2 0 4 7] , y0 [2 0 4 7] , z0 [2 0 4 7] , L [2 0 4 7] , t h i c k n e s s [2 0 4 7] ;
double co s t [2 0 4 7] , s i n t [2 0 4 7] , phi [2 0 4 7] , cosp [2 0 4 7] , s inp [2 0 4 7] ;
double xg [MAXPTS] , yg [MAXPTS] , zg [MAXPTS] ;
double x l [MAXLOCAL] , y l [MAXLOCAL] , z l [MAXLOCAL] ;
char o u t f i l e [1 2 8] ;

/∗ i n i t i a l i z e ∗/
srand (time ((t ime t ∗)NULL)) ;
for (i =0; i <2048; i++)
{

L [i] = 0 . 0 ;
t h i c k n e s s [i] = 0 . 0 ;
x0 [i] = 0 . 0 ;
y0 [i] = 0 . 0 ;
z0 [i] = 0 . 0 ;

}
for (i =0; i<MAXPTS; i++)
{

xg [i] = −1.0;
yg [i] = −1.0;
zg [i] = −1.0;

}
L [0] = L0 ; /∗ t h i s cou ld be user−s p e c i f i e d ∗/

3

t h i c k n e s s [0] = t0 ;
k=1;
while (k < 2048)
{
/∗ genera te a new branch ∗/

/∗ branch l en g t h ∗/
r1 = 1.0∗ rand ()/RAND MAX;
L [k]= fabs (L [k−1]∗ r1) ;
L [k+1] = L [k] ;
r2 = 1 .0∗ rand ()/RAND MAX;
t h i c k n e s s [k]= fabs (t h i c k n e s s [k−1]∗ r2) ;
t h i c k n e s s [k+1] = t h i c k n e s s [k−1]∗(1− r2) ;
Lsteps = L [k] / s t e p s i z e +1;
r s t e p s = t h i c k n e s s [k] / s t e p s i z e +1;

for (m=0;m<r s t e p s ;m++)
{
for (p=0;p<r s t e p s ; p++)
{
for (q=0;q<Lsteps ; q++)
{
x l [l] = −t h i c k n e s s [k]+m∗ s t e p s i z e ;
y l [l] = −t h i c k n e s s [k]+p∗ s t e p s i z e ;
z l [l] = q∗ s t e p s i z e ;
l ++;
}}}

Nloca l = Lsteps ∗ r s t e p s ∗ r s t e p s +1;

/∗ compute branch d i r e c t i o n ∗/
r3 = 1.0∗ rand ()/RAND MAX;
/∗ d i r e c t i o n cos ine o f z coord ina te 0−p i /2 ∗/
co s t [k]= r3 ;
s i n t [k]= s q r t (1.0− co s t [k]∗ co s t [k]) ;
c o s t [k+1] = cos t [k] ;
s i n t [k+1] = s i n t [k] ;
/∗ one branch i s mirror image o f the o ther −− o f f by p i ∗/
r4 = 1.0∗ rand ()/RAND MAX;
phi [k]= t p i ∗ r4 ;
phi [k+1] = phi [k]−pi ;
cosp [k] = cos (phi [k]) ;
s inp [k] = s i n (phi [k]) ;

/∗ Rotat ion matrix ∗/
A00 = cosp [k]∗ co s t [k] ;
A01 = −s inp [k] ;
A02 = cosp [k]∗ s i n t [k] ;
A10 = s inp [k]∗ co s t [k] ;
A11 = cosp [k] ;
A12 = s inp [k]∗ s i n t [k] ;
A20 = −s i n t [k] ;

4

A21 = 0 . 0 ;
A22 = cos t [k] ;
for (l =0; l<Nloca l ; l++)
{
xg [t] = A00∗ x l [l] + A01∗ y l [l] + A02∗ z l [l] + x0 [k] ;
yg [t] = A10∗ x l [l] + A11∗ y l [l] + A12∗ z l [l] + y0 [k] ;
zg [t] = A20∗ x l [l] + A21∗ y l [l] + A22∗ z l [l] + z0 [k] ;
t++;
}

x0 [k+1] = A02∗L [k] + x0 [k] ;
y0 [k+1] = A12∗L [k] + y0 [k] ;
z0 [k+1] = A22∗L [k] + z0 [k] ;
k++;
}

}

6 Results and Future Work

The code did not run initially, though it ran on a different machine. The existing code must still be run.
However, this program only generates a tree; future work would involve integrating a beam of light at

various angles through the tree and measuring the amount of light blocked. The angle of the beam can be
changed to consider the location of the sun at different times of day and different points in the year.

5

	Introduction
	Assumptions
	Creating the Tree
	Coordinate Systems
	Code
	Results and Future Work

